Friday, September 11, 2009

Capabilities of Nuclear Weapons, U.S. Department of Defense, Effects Manual EM-1


Secrecy of nuclear weapons capabilities: new information about updates to EM-1, Capabilities of Nuclear Weapons










We've blogged (in the 2006 Glasstone and Dolan post) about all of the history and technical details of the various updates to this manual to the present time. It started out in July 1951 as Capabilities of Atomic Weapons, TM 23-200, edited by Dr Gerald W. Johnson (Chief of the Analysis Branch, U.S. Armed Forces Special Weapons Project), and was a secret quantitative supplement to the more qualitative 1950 unclassified Effects of Atomic Weapons. Some 1,079 copies of each edition were published, and it was regularly updated with page changes as new information from testing became available. For example, the November 1957 edition includes an analysis of the effect of the blast wave "precursor" caused by desert sand popcorning into hot dust due to the thermal radiation flash on sandy soil, and also a brief mention of EMP effects on electronic equipment. Neither of these topics were even mentioned in the unclassified Effects of Nuclear Weapons until April 1962. In November 1964, the secret manual was revised and retitled Capabilities of Nuclear Weapons, and the Scientific Advisory Group on Effects (SAGE) was formed to edit revisions to the manual.



Above: SAGE Panel in August, 1966.

Capabilities of Nuclear Weapons originally started out as the 162 pages long 1945 classified Handbook on the Capabilities of Atomic Weapons, AD511880 (PDF version located here):

“The purpose of this handbook is to set forth, in a concise and simple manner, criteria for estimating the effects of atomic weapons for use by the Services. It is designed to serve as a handy reference to aid Field Commanders and their staffs in determining the capabilities and effects of atomic weapons in respect to specific targets. The scope of this handbook includes thermal and nuclear radiation and blast effects of atomic weapons on items of military interest such as structures, materiel and personnel. These effects are analyzed with respect to Air, Surface, Underground, and Underwater Bursts. Sufficient information is presented to allow Field Commanders to determine the best type of Weapon and Burst to be employed to obtain maximum desired effects on various types of targets.”

TM 23-200, Capabilities of Atomic Weapons, November 1957, was a single volume consisting of 441 pages in 12 sections divided into 2 parts (it has only about a quarter as many pages as Dolan’s 1651 pages long 2-volume 1972 revision DNA-EM-1):

Contents of Capabilities of Atomic Weapons, U.S. Armed Forces Special Weapons Project, Washington, D.C., technical manual TM 23-200, November 1957, Confidential (declassified in 1997)

Preliminary pages (22 pages consisting of title pages, distribution list, contents pages, page locator for physical phenomena figures and tables, and foreword)

Part 1: Physical Phenomena

Section 1: Introduction (13 pages)
Section 2: Blast and Shock Phenomena (95 pages)
Section 3: Thermal Radiation Phenomena (19 pages)
Section 4: Nuclear Radiation Phenomena (87 pages)

Part 2: Damage Criteria

Section 5: Introduction (21 pages)
Section 6: Personnel Casualties (20 pages)
Section 7: Damage to Structures (54 pages)
Section 8: Damage to Naval Equipment (15 pages)
Section 9: Damage to Aircraft (11 pages)
Section 10: Damage to Military Field Equipment (23 pages)
Section 11: Forest Stands (15 pages)
Section 12: Miscellaneous Radiation Damage Criteria (10 pages)

Appendix 1: Supplementary Blast Data (32 pages)
Appendix 2: Useful Relationships (10 pages)
Appendix 3: Glossary (7 pages)
Appendix 4: Bibliography (9 pages)

Page 4 of this bibliography cites the report: J. F. Canu and P. J. Dolan, Prediction of Neutron-Induced Activity in Soils, AFSWP-518, June 1957, Secret – Restricted Data.





It has a Foreword on page xxii by Edward N. Parker (Rear Admiral, USN), Chief, Armed Forces Special Weapons Project, stating:

'The purpose of this manual is to provide the military Services with a compendium of the phenomena manifested by the detonation of nuclear weapons and the effects thereof in terms of damage to targets of military interest.

'This edition of Capabilities of Atomic Weapons represents the continuing effort by the Armed Forces Special Weapons Project to make available the progressively improved data resulting from field testing, scaled tests, laboratory and theoretical analyses.


'... Every effort has been made to include the best available data which will assist the using Services in meeting their particular operational requirements. As additional or better data becomes available it will be incorporated herein.'

Concerning the early history of EMP as a damaging effect of nuclear weapons, a very brief and but pertinent discussion of EMP effects from low altitude and surface bursts occurs in the November 1957 edition of the Confidential (classified) U.S. Department of Defense, Armed Forces Special Weapons Project manual TM 23-200, Capabilities of Atomic Weapons, section 12, Miscellaneous Radiation Damage Criteria, page 12-2, paragraph 12.2c:

'Electromagnetic Radiation. A large electrical signal is produced by a nuclear weapon detonation. The signal consists of a rather sharp transient signal with a strong frequency component in the neighborhood of 15 kilocycles. Field strengths greater than 1 volt per metre have been detected from megaton yield weapons at a distance of about 2,000 miles. Electronic equipment which responds to rapid, short duration transients can be expected to be actuated by pickup of this electrical noise.'

'In November 1964, DASA (Defence Atomic Support Agency) consolidated nuclear effects knowledge in the classified publication, Capabilities of Nuclear Weapons. A revised edition was published in 1968. These publications preceded the two-volume Effects Manual-1 (EM-1), first published in 1972. ... Integrating Knowledge: In 1972, DNA published a two-volume nuclear weapons effects manual called Effects Manual-1 (EM-1). Two years later, DNA issued a NATO-releasable [less classified] version of EM-1. These volumes provided critical planning information for unified and specified CINCs, civilian civil defense activities, and NATO officials.'


- pages 16 and 19 of the colourful booklet, Defense Soecial Weapons Agency, 50th Anniversary 1947-1997. For a 466 page review published by the Defense Threat Reduction Agency in 2002, see AD-A412977 (35.3 Mb).

All civil defence planning is either directly or indirectly (via Glasstone and Dolan Effects of Nuclear Weapons 1977) based on Dolan's Capabilities of Nuclear Weapons. The latest official American civil defence manual, for example, cites directly the secret 1988 revision of 'DNA EM-1 (Effects Manual 1), Capabilities of Nuclear Weapons, Chapter 10, July 1, 1972'; 'NATIONAL PLANNING SCENARIOS: Created for Use in National, Federal, State, and Local Homeland Security Preparedness Activities, Version 21.2 DRAFT, February 2006'.

There is a definite need to debunk general Planet of the Apes style nuclear effects exaggeration hype by politicans which simultaneously:

(1) encourages misguided nuclear proliferation (rogue states, dictators and terrorists think that simply having a nuclear threat will get them anything they want by intimidation, due to the exaggeration in the popular media) and

(2) discourages simple civil defense countermeasures from being taken seriously. If you're in the crater region, you don't need civil defense, but as we've seen, even the crater sizes have been grossly exaggerated in the public domain. The "overkill" areas are trivial compared to the areas over which even the simplest informed civil defense countermeasures like duck and cover and getting out of the immediate downwind area (or under cover there) before the wind blows fallout there, is effective at saving lives.



Why exaggerating the effects of aerial bombardment caused World War II

The tragedy of the exaggeration of the offensive capabilities of aerial attack was plain to see during the 1930s. Public opinion was on British Prime Minister Neville Chamberlain's side (appeasing Hitler) because the effects of war had been exaggerated in 1938 by the British War Office: aerial bombing was (inaccurately) predicted to cause 121 casualties/ton, and the German air force was expected (for no reason other than doom mongering, it seems) to deliver its maximum capacity of 600 tons of chemical incendiary, gas and explosive bombs daily on Britain, killing 2.2 million people per month.

Chamberlain and the British public were scared by these false "predictions" which were based on the WWI unopposed attacks in daylight and had no relevance for inaccurate nighttime bombing when enemy bombers were subject to AA and fighter defenses.

In World War II a total of 71.27 kilotons (in average units of 175 kg of explosive, according to the British Home Office) of bombs, V1 cruise missiles and V2 supersonic ballistic missiles hit Britain, killing 60,595 and injuring 86,182, a casualty rate of 2 casualties/ton, 60 times fewer than the prediction based on World War I data!

If Chamberlain and - more important - the general public had known the true civilian threat in 1938 from aerial attack instead of the hysterical exaggerations officially promoted, then Hitler might have been stopped or effectively deterred earlier on, with less cost in human lives. Exaggerating the effects of war and "discrediting" civil defense countermeasures using lying propaganda merely gave Germany years longer to prepare for war, which made the situation worse than it would otherwise have been if action had been taken before world war was inevitable.

Dolan's 2-part secret revision was published in 1972 with 17 chapters which fitted into two loose-leaf binders, and a 22 chapter secret update under the editorship of Brode was published in 1991 (consisting of 22 separate volumes). In 1993, this final unwieldy revision was summarised as a set of the basic equations for predicting effects and issued in September 1996 as the 736 pages long Handbook of Nuclear Weapon Effects: Calculational Tools Abstracted from DSWA's Effects Manual One (EM-1) edited by John A. Northrop, and published by the Defense Special Weapons Agency.



Above: John Northrop's 736 pages long Handbook of Nuclear Weapon Effects: Calculational Tools Abstracted from DSWA's Effects Manual One (EM-1) in September 1996 briefly summarized the formulas from the multi-thousand pages long 22-volume Capabilities of Nuclear Weapons, DNA-EM-1, while in July 2001 the 535 pages long first edition of Charles Bridgman's Introduction to the Physics of Nuclear Weapons Effects summarized the physics behind the formulae in Northrop's book.



Capabilities of Nuclear Weapons, DNA-EM-1
Philip J. Dolan (Editor), Stanford Research Institute
July 1, 1972
Change 1: July 1, 1978
Change 2: August 1, 1981
DEFENSE NUCLEAR AGENCY, WASHINGTON, D.C.

Declassified on 13 February 1989.

Part 1. Phenomenology.
PDF download of Part 1, preliminary pages and contents pages, Change 2, August 1981 (45 pages, 1.6 MB) These pages are also available here.

Chapter 1. Introduction. 30 pages.
Chapter 2. Blast and Shock Phenomena. 306 pages. Blast wave section is here and ground shock/cratering/water bursts/underwater bursts section is here.
Chapter 3. Thermal Radiation Phenomena. 114 pages.
Chapter 4. X-Ray Radiation Phenomena. 30 pages.
Chapter 5. Nuclear Radiation Phenomena. 151 pages.
Chapter 6. Transient-Radiation Effects on Electronics (TREE) Phenomena. 16 pages.
Chapter 7. Electromagnetic Pulse (EMP) Phenomena. 40 Pages.
Chapter 8. Phenomena Affecting Electromagnetic Propagation. 94 pages.

Part 2. Damage Criteria.
PDF download of Part 2, preliminary pages and contents pages, Change 2, August 1981 (50 pages, 1.7 MB)

Chapter 9. Introduction to Damage Criteria. 187 Pages.
Chapter 10. Personnel Casualties. 38 Pages.
Chapter 11. Damage to Structures. 50 Pages.
Chapter 12. Mechanical Damage Distances for Surface Ships and Submarines Subjected to Nuclear Explosions. 147 Pages.
Chapter 13. Damage to Aircraft. 81 Pages.
Chapter 14. Damage to Military Field Equipment. 46 Pages.
Chapter 15. Damage to Forest Stands. 64 Pages.
Chapter 16. Damage to Missiles. 121 Pages.
Chapter 17. Radio Frequency Signal Degradation Relevant to Communications and Radar Systems. 32 pages.
Appendices A-F. 112 pages.




Dolan's Capabilities of Nuclear Weapons, U.S. Department of Defense manual EM-1 (1651 pages in two parts, 'Phenomenology' and 'Damage Criteria'; both originally loose-leaf binders to allow page updates) is the massive and complete 'Secret-Restricted Data' classified nuclear weapons effects compendium source used to write the relatively brief and less detailed unclassified book, The Effects of Nuclear Weapons. The problem with the latter is that it omits vital nuclear effects data for civil defence, which we will review below. Now Dolan's massive secret compilation of nuclear test facts and computer simulation results is going online as PDF files. One example of something blanked-out in DNA-EM-1 is the graph showing predicted EMP electric field strengths at the earth's surface from high altitude nuclear detonations of various yields and altitudes, but that graph occurs in another declassified document as explained in a post on high altitude EMP effects, http://glasstone.blogspot.com/2006/03/emp-radiation-from-nuclear-space.html. There is also a supplement showing effects of nuclear weapons in arctic conditions, linked here. Some additional declassified details from DNA-EM-1 can be found on pages 164 and 168 of the 1998 Sandia National Laboratory Survey of Weapons Development and Technology, report WR-708. E.g., severe tank damage occurs at a peak overpressure of 49 psi, immediate radiation casualties at 8,000 rads, and the x-ray and nuclear radiation effects from an exoatmospheric burst in the vacuum of space (above about 100 km) can be represented by:

X-ray exposure (cal/cm2) = 5.97*106Wkt/Rm2 (this corresponds to 75% of the explosion energy in x-rays),

Peak gamma dose rate (rads/sec) = 5.37*1015Wkt/Rm2, and

Neutron fluence (neutrons/cm2) = 2.29*1018Wkt/Rm2.



Above: as a multimedia supplement to the Capabilities of Nuclear Weapons, this excellent originally secret U.S. Defense Nuclear Agency film, High-Altitude Nuclear Weapons Effects: Part One, Phenomenology (20 minutes) discusses in detail, using nuclear test film clips, the effects of 1962 high altitude nuclear tests BLUEGILL, KINGFISH, and STARFISH. It is mainly concerned with fireball expansion, rise, striation along the Earth's natural magnetic field lines, and air ionization effects on radio and radar communications, but it also includes a section at the end explaining the high altitude EMP damage mechanism.

BLUEGILL (410 kt, 48 km detonation altitude, 26 October 1962) fireball was still fully ionized at a temperature of about 10,000 K and 'several kilometres in diameter' when the shock wave departed from the fireball at 0.1 second. The fireball expanded to 10 km in diameter at 5 seconds, at which time it was buoyantly rising at 300 m/sec. It was filmed from below and within a minute transforms while rising into a torus or doughnut shape. It attained a diameter of 40 km at 1 minute, and stabilised at an altitude of 100 km a few minutes later.

KINGFISH (410 kt, 95 km detonation altitude, 1 November 1962) initially had a fireball size is 10 times bigger than BLUEGILL, because of the lower air density at the higher detonation altitude. The KINGFISH fireball rises ballistically (not buoyantly) at 1,500 m/sec (which is 5 times faster than the buoyant rise speed of the lower altitude detonation BLUEGILL). The fireball diameter longways is 300 km at 1 minute, and it is elongated along the natural geomagnetic field lines while expanding. It reaches a maximum altitude of 1,000 km in 7.5 minutes before falling back to 150-200 km (it falls back along the magnetic field lines, not a simple vertical fall). The settled debris has a diameter of 300 km and a thickness of 30 km, emitting beta and gamma radiation which ionize the air in the D-layer, forming a ‘beta patch’. Photographs of beta radiation aurora from the fireball are included in the film: beta particles spiral along the Earth's magnetic field lines and shuttle along the field lines from pole to pole. The film above has a speeded-up film showing the development of the magnetically striated fireball from the KINGFISH fireball.

STARFISH (1.4 Mt, 400 km detonation altitude, 9 July 1962) according to the Nuclear Effects Group at the Atomic Weapons Establishment, Aldermaston, for detonations above 200 km altitude, the “expanding debris compresses the geomagnetic field lines because the expansion velocity is greater than the Alfven speed at these altitudes. The debris energy is transferred to air ions in the resulting region of tightly compressed magnetic field lines. Subsequently the ions, charge-exchanged neutrals, beta-particles, etc., escape up and down the field lines. Those particles directed downwards are deposited in patches at altitudes depending on their mean free paths. These particles move along the magnetic field lines, and so the patches are not found directly above ground zero. Uncharged radiation (gamma-rays, neutrons and X-rays) is deposited in layers which are centered directly under the detonation point. The STARFISH event (1.4 megatons at 400 km) was in this altitude regime. Detonations at thousands of kilometres altitude are contained purely magnetically. Expansion is at less than the local Alfven speed, and so energy is radiated as hydromagnetic waves. Patch depositions are again aligned with the field lines.”

When STARFISH was detonated: “The large amount of energy released at such a high altitude by the detonation caused widespread auroras throughout the Pacific area, lasting in some cases as long as 15 minutes; these were observed on both sides of the equator. In Honolulu an overcast, nighttime sky was turned into day for 6 minutes (New York Times, 10 July 1962). Observers on Kwajalein 1,400 nautical miles (about 2,600 km) west reported a spectacular display lasting at least 7 minutes. At Johnston Island all major visible phenomena had disappeared by 7 minutes except for a faint red glow. The earth's magnetic field [measured at Johnston] also was observed to respond to the burst. ... On 13 July, 4 days after the shot, the U.K. satellite, Ariel, was unable to generate sufficient electricity to function properly. From then until early September things among the satellite designers and sponsors were ‘along the lines of the old Saturday matinee one-reeler’ as the solar panels on several other satellites began to lose their ability to generate power (reference: The Artificial Radiation Belt, Defense Atomic Support Agency, 4 October 1962, report DASA-1327, page 2). The STARFISH detonation had generated large quantities of electrons that were trapped in the earth's magnetic field; the trapped electrons were damaging the solar cells that generated the power in the panels.” (Defense Nuclear Agency report DNA-6040F, AD-A136820, pp. 229-30.)



Above: as a multimedia supplement to the Capabilities of Nuclear Weapons, this excellent originally secret U.S. Defense Nuclear Agency film, High-Altitude Nuclear Weapons Effects: Part Two, Systems Interference (16 minutes), discusses the interference to radio and radar signals by high altitude nuclear detonations.

What could happen when Iran gets the U-235, and maybe gets some lithium and heavy water to make lithium deuteride to get a H-bomb (it's now known than lithium-6 deuteride isn't necessary; the 11-Mt Castle-Romeo nuclear test used only natural lithium and was a great success)? It may be just like Munich and Iran will be appeased through fear of a nuclear war, due to lying exaggerations hyped in the media just like the prediction of 2.2 million casualties per month from Nazi air raids.

Update: the nuclear weapons proliferation exaggerated threat is already causing Britain to appease Iran and take no notice of violation of human rights, according to Martin Fletcher's front page story in The Times newspaper, 24 September 2009.

Britain is appeasing Iran, Nobel laureate Shirin Ebadi says
by Martin Fletcher
The Times online, September 24, 2009


The only Iranian to win the Nobel Peace Prize accused Britain of ignoring the regime’s savage suppression of opposition in order to safeguard talks on its nuclear programme.

Shirin Ebadi, the human rights lawyer, said that her worst fears were confirmed when she saw the British Ambassador at President Ahmadinejad’s inauguration.

“That’s when I felt that human rights were being neglected,” she told The Times. “I’m very sorry to say the West cares more about its own security than human rights. I think they’re wrong . . . Undemocratic countries are more dangerous than a nuclear bomb. It’s undemocratic countries that jeopardise international peace.”

Dr Ebadi said that sanctions should have been imposed on the Iranian regime over the alleged theft of the election and the subsequence killing, beating and imprisoning of opponents. She has called for the downgrading of Western embassies, the withdrawal of ambassadors and the freezing of the assets of Iran’s leaders.
...

Dr Ebadi plans to go home in two months, daring the regime to arrest the first Muslim woman to win a Nobel prize. In 2000 she spent three weeks in solitary confinement after lodging a complaint against Tehran’s police chief for a lethal attack on pro-democracy students.

If not imprisoned, she will fight to secure justice for the families of those killed in the crackdown — a trail that could lead all the way to the Supreme Leader, Ayatollah Ali Khamenei. She has been approached by the mother of Neda Soltan, the student whose death made her an icon of the opposition.

Dr Ebadi said that she was enraged by the crimes that the regime had perpetrated in the name of Islam, but that ordinary Iranians were united as never before, with women at the fore, and that they would not forgive or forget the regime’s crimes. “The opposition has gained unstoppable momentum,” she said. “The people have reached a point of no return. I am sure they will be victorious, but when? The fall of the Berlin Wall was totally predictable but no one could say when.”


Before 9/11, Weinberger was quizzed by skeptical critics on BBC News Talking Point on Friday, 4 May, 2001, Caspar Weinberger quizzed on new US Star Wars ABM plans:

It is like saying we don't like chemical warfare - we don't like gas attacks - so we are going to give up and promise not to have any defences ever against them and that of course would mean then we are perfectly safe. ...

‘The ... idea that you are somehow endangering people by having a defence strikes me almost as absurd as saying you endanger people by having a gas mask in a gas attack. ...

‘Now if you tell an aggressive nation that [chemical or nuclear weapons are] the one system of weapons that is never going to be defended against - what are they going to do? They are going to make every effort to get that kind of system of weapons. That is what is happening ...’


Update: Google have now digitized in quality freely downloadable PDF format (and also in much poorer quality online-viewer format) a 377 pages long unclassified 1965 U.S. National Academy of Sciences nuclear weapons effects compendium, Proceedings of the symposium on protective structures for civilian populations. (This begins with Dr Brode's review of nuclear weapon effects.) Other relevant Google free downloads in PDF format can be found here, here, here, here, here, here, here, and the 15 September 1961 issue of Life magazine with President Kennedy's famous letter on civil defense against fallout can be found here.




Above: Life magazine (Kennedy's civil defense issue) makes it clear that in the absence of an all-out nuclear war, survival means having not just the ability to hit back, but also having civil defence so that the other side is unable to cause excessive intimidation with their nuclear stockpile; any cold war has a winner and a loser. As detailed in the Glasstone and Dolan post earlier, the refusal to be intimidated held back the Soviet Union long enough for it to collapse.

Marshall of the Soviet Union Vasiliy D. Sokolovsk, Military Strategy (Ministry of Defense of the USSR, 1969): ‘A war will end lawfully [i.e. in accordance with the presumed ‘laws’ of Marxism-Leninism for the evolution of society] with the victory of the progressive Communist social and economic system over the reactionary capitalist system, which is historically destined to go under.’

Marshal Nikolai V. Ogarkov, Chief of the Soviet General Staff, 1979 (the year the Soviet Union invaded Afghanistan): ‘The Soviet Union has superiority over the United States. Henceforth it will be the United States who will be threatened. It had better get used to it.’

Aleksandr Solzhenitsyn interviewed in the Wall Street Journal, 23 June 1983: ‘There are two Soviet Unions. The people - millions of them - dream of an end to wars, to armaments. The government, to the contrary, does not contemplate that idea even for a minute. It does, of course, want the WEST to disarm. But not one item of Soviet military equipment will ever be given up. ... It is normal to be afraid of nuclear weapons. I would condemn no one for that. But the generation now coming out of Western schools is unable to distinguish good from evil. Even those words are unacceptable. This results in impaired thinking ability. Isaac Newton, for example, would never have been taken in by communism! These young people will soon look back on photographs of their own demonstrations and cry. But it will be too late. I say to them: You are protesting nuclear arms. But are you prepared to try to defend your homeland with NON-nuclear arms? No: These young people are unprepared for ANY kind of struggle.’

Tens of millions died in World War II because of the 1930s efforts to negotiate with totalitarians through a false fear of war due to the quantitative exaggeration of the effects of aerial attack, and a widespread belief that peace could be guaranteed by exaggerating the effects of war into a dogmatic religion of pseudo-science, which would brainwash humanity into avoiding war. This lying only encouraged the proliferation of weapons to the despotic dictatorships which wanted to have the threat of such weapons in order to achieve political intimidation, ‘peaceful invasions’ and genocide without opposition. See, for example, the article:

INTERNATIONAL PHYSICIANS FOR THE PREVENTION OF NUCLEAR WAR: MESSIAHS OF THE NUCLEAR AGE?’, The Lancet (British medical journal), 18 November 1988, pp.1185-6, by Jane M. Orient, MD.

Leaders of the Nobel Peace Prize winning group International Physicians for the Prevention of Nuclear War (IPPNW) claim that their struggle against the nuclear threat may be ‘one of the significant contributions of our profession to the survival of humankind’ (Lown, B., ‘Looking back, seeing ahead’, Lancet, 1988; ii: 203-4). Citing their ‘unique knowledge and expertise’ as qualifications for working for the abolition of nuclear weapons, IPPNW urges physicians to educate the public about nuclear war and to offer sound prescriptions for nuclear war prevention (Lown, B., ‘Looking back, seeing ahead’, Lancet, 1988; ii: 203-4).

In science, good intentions and noble sentiments do not exempt one's work from critical scrutiny. Because the advocacy of IPPNW is cloaked in scientific authority, it should be (but rarely is) subjected to the usual rigors of scientific criticism.

IPPNW has indeed played a major role in educating the public about nuclear war, and consequently in gaining widespread acceptance of fallacious beliefs, some of which are repeated in the Lancet (Lown, B., ‘Looking back, seeing ahead’, Lancet, 1988; ii: 203-4). For example, Lown speaks of nuclear winter as a “discovery” rather than as a hypothesis. IPPNW has pointedly ignored the criticism (Penner, J. E., ‘Uncertainties in the smoke source term for “nuclear winter” studies’, Nature, 1986; 324: 222-226; Seitz, R., ‘Siberian fire as “nuclear winter” guide’, Nature, 1986; 323: 116-117; Seitz, R., ‘In from the cold: “nuclear winter” melts down’, National Interest, 1986; 2(1): 3-17; Chester, C. V., et al., ‘A preliminary review of the TTAPS nuclear winter scenario’, Oak Ridge, TN: Oak Ridge National Laboratory, 1984, report ORNL/TM-9223) of the original nuclear winter report, as well as the later, more sophisticated studies that have debunked the doomsday scenario ...

In referring to the Chernobyl disaster, Lown (Lown, B., ‘Looking back, seeing ahead’, Lancet, 1988; ii: 203-4) states that the odds of a meltdown were estimated to be 1 in 10,000 years, according to Soviet Life. (A mere meltdown would have been a trivial event in comparison with the graphite-fueled fire that actually occurred.) Yet American engineers recognized the danger of reactors with a positive void coefficient (like the Chernobyl reactor) as early as 1950 (Teller, E., ‘Better a shield than a sword: perspectives on defense and technology’, New York: Free Press, 1987). Why did the Soviets choose an unsafe design for a reactor built quite recently? One possible explanation is that such reactors can be refueled while in operation, permitting the production of weapons-grade plutonium as a byproduct (Cohen, B. L., ‘The nuclear reactor accident at Chernobyl, USSR’, Am. J. Phys, 1987; 55: 1076-1083).

The assertion that civil defense might ‘foster illusions but would not mitigate any of the dreadful consequences’ (Lown, B., ‘Looking back, seeing ahead’, Lancet, 1988; ii: 203-4) is in conflict with the data. ... citing the experience of the Hamburg firestorm of 1943 as ‘proof’ of the futility of shelters (Ervin F. R., et al., ‘Human and ecologic effects in Massachusetts of an assumed thermonuclear attack on the United States’, New England Journal of Medicine, 1962; 266: 1127-1137; Leaf A., ‘New perspectives on the medical consequences of nuclear war’, New England Journal of Medicine, 1986; 315: 905-912; Geiger, H. J., ‘Illusion of survival’, in: Adams, A. and Cullen, S., eds., ‘The final epidemic: physicians and scientists on nuclear war’, Chicago: Educational Foundation for Nuclear Science, 1981: 173-181; Leaning, J., ‘Star Wars revives civil defense’, Bulletin of the Atomic Scientists, May 1987; vol 43(4): 42-46), even though 85% of the population in the firestorm area survived, including most persons who were in minimally adequate bomb shelters (U. S. Strategic Bombing Survey, No. 154: Public Air Raid Shelters in Germany; Earp, Kathleen A., ‘Deaths from Fire in Large Scale Air Attack – with Special Reference to the Hamburg Fire Storm’, Whitehall, U. K. Home Office Scientific Advisory Branch, Report CD/SA 28, April 1953, discussed in summary here and in detail here, but ignored by Brode).

... history is apparently not among the areas of expertise claimed by IPPNW. Its spokesmen have yet to comment on the Washington Naval Treaty of 1922, the Kellogg-Briand Pact of 1928 (for which Kellogg and Briand received the Nobel Peace Prize), the Oxford Peace Resolution of 1934, the Munich Agreement of 1938, or the Molotov-Ribbentrop Pact of 1939, and on the effectiveness of these measures in preventing World War II. ...

Sir Norman Angell (also a Nobel Peace Prize winner), in his 1910 best-seller entitled The Great Illusion, showed that war had become so terrible and expensive as to be unthinkable. The concept of ‘destruction before detonation’ was not discovered by Victor Sidel (Sidel, V. W., ‘Destruction before detonation: the impact of the arms race on health and health care’, Lancet 1985; ii: 1287-1289), but was previously enunciated by Neville Chamberlain, who warned his Cabinet about the heavy bills for armaments: ‘even the present Programmes were placing a heavy strain upon our resources’ (Minutes of the British Cabinet meeting, February 3, 1937: quoted in Fuchser, L. W., ‘Neville Chamberlain and Appeasement: a Study in the Politics of History’, Norton, New York, 1982). ...

Psychic numbing, denial, and ‘missile envy’ (Caldicott, H., ‘Missile envy: the arms race and nuclear war’, New York: William Morrow, 1984) are some of the diagnoses applied by IPPNW members to those who differ with them. However, for the threats facing the world, IPPNW does not entertain a differential diagnosis, nor admit the slightest doubt about the efficacy of their prescription, if only the world will follow it. So certain are they of their ability to save us from war that these physicians seem willing to bet the lives of millions who might be saved by defensive measures if a nuclear attack is ever launched.

Is this an omnipotence fantasy?


"Groupthink is a type of thought exhibited by group members who try to minimize conflict and reach consensus without critically testing, analyzing, and evaluating ideas. Individual creativity, uniqueness, and independent thinking are lost in the pursuit of group cohesiveness, as are the advantages of reasonable balance in choice and thought that might normally be obtained by making decisions as a group.[1] During groupthink, members of the group avoid promoting viewpoints outside the comfort zone of consensus thinking. A variety of motives for this may exist such as a desire to avoid being seen as foolish, or a desire to avoid embarrassing or angering other members of the group." - Wikipedia.

Ultimately the nuclear weapons civil defence policy is driven by prejudice, not by scientific facts. Making the facts widely available in a clear format of relevance to the nuclear threats actually existing today (as opposed to the effects of a hypothetical all out nuclear war between communism and capitalism three or four decades ago, before arms reductions began) would help.

Upate: there is an article by Zbigniew Jaworowski of Poland's Central Laboratory for Radiological Protection, "Radiation Hormesis - A Remedy for Fear" in BELLE Newsletter, pp. 14-20, Vol. 15, No. 2, May 2009. The long-term effects of radiation were reviewed in detail on the earlier post, linked here. (For a video introduction to this topic, see the presentation by Dr Gary Sanquist, Low-Level Radiation: Is It Good for You?)

See also: Bernard L. Cohen, Ph.D., "The Linear No-Threshold Theory of Radiation Carcinogenesis Should Be Rejected", published in Journal of American Physicians and Surgeons, Volume 13, Number 3, Fall 2008, pp. 70-76, linked here. There is an audio file of a talk by him linked here. One issue I have with his papers is that he doesn't lucidly go into the scientific details of the Hiroshima and Nagasaki threshold dose cover up by the RERF and the radium dial painters threshold dose cover-up.



Update on 19 October 2009: PhD research student Melissa Smith of the Centre for the History of Science, Technology and Medicine at the University of Manchester, has just had published a vital new scholarly paper on the role of the British Home Office Scientific Advisory Branch nuclear test research programme in shaping the 'Protect and Survive' advice (one fragment of which was actually published as a paper in the little read 1965 U.S. National Academy of Sciences civil defense compendium, Proceedings of the symposium on protective structures for civilian populations, giving experimental data on the 1.25 MeV mean gamma Co-60 radiation protection factors for emergency 'core shelters' inside typical British homes):

Melissa Smith, 'Architects of Armageddon: the Home Office Scientific Advisers' Branch and civil defence in Britain, 1945–68', British Journal for the History of Science (published by Cambridge University Press), 8 October 2009.

Abstract:

'In 1948, in response to the perceived threat of atomic war, the British government embarked on a new civil defence programme. By the mid-1950s, secret government reports were already warning that this programme would be completely inadequate to deal with a nuclear attack. The government responded to these warnings by cutting civil defence spending, while issuing apparently absurd pamphlets advising the public on how they could protect themselves from nuclear attack. Historians have thus far sought to explain this response with reference to high-level decisions taken by policymakers, and have tended to dismiss civil defence advice as mere propaganda. This paper challenges this interpretation by considering the little-known role of the Home Office Scientific Advisers' Branch, a group of experts whose scientific and technical knowledge informed both civil defence policy and advice to the public. It explores both their advisory and research work, demonstrating their role in shaping civil defence policy and showing that detailed research programmes lay behind the much-mocked government civil defence pamphlets of the 1950s and 1960s.'


This paper is an expanded version of the essay awarded the Singer Prize of the British Society for the History of Science for 2008:
Ms Melissa Smith wins 2008 Singer Prize

The BSHS Singer Prize judging panel has selected the essay entitled "Architects of Armageddon: Scientific advisers and civil defence in Britain, 1945-68" by Ms Melissa Smith (CHSTM, University of Manchester), as the winner of the 2008 Singer Prize. The judges were impressed by the flair and ambition of the essay, by its critical engagement with the existing literature on post-war British science and government, and by its extensive use of primary archival sources. They found the essay original, well written, engaging and informative.

We have also blogged about this research. As previously explained, the government should have published nuclear weapons effects research based on nuclear test data in order to substantiate the scientific basis for civil defense. Hiding the factual scientific evidence for public civil defense advice behind a solid wall of secrecy is a guaranteed way to allow the advice to be falsely ridiculed and ignored by ignorant 'scientists' with a political agenda, thereby maximising the scale of tragedy in the event that civil defense is needed in a disaster. Allowing the popular media to wrongly discredit civil defence also increases the risk of war by encouraging dictators and terrorists to spend money trying to get hold of weapons of mass destruction in the belief that there is no effective defense against such weapons. It's vital to publish the facts!

Reduction of countermeasure and civil defense chapter contents of the Effects of Nuclear Weapons in successive editions

The key pages from the U.S. Government's 456 pages long September 1950 edition of The Effects of Atomic Weapons are linked here (82.7 MB PDF file download). Notice that it contains extensive data on the underwater BAKER test base surge and also rainout radiation patterns not to mention detailed predictions of shore innundations by the water waves created, pertinent to the effects of radiation and water waves from a terrorist shallow underwater nuclear detonation below the waterline inside a ship in a harbor or off the coast of city, which is excluded from all further editions, and it also contains two chapters dealing with civil defense countermeasures: Chapter X, Decontamination, and Chapter XII, Protection of Personnel. The next edition was the June 1957 Effects of Nuclear Weapons, key pages of which are linked here (90.8 MB download), which only contains one civil defense chapter: Chapter XII, Protective Measures (although it also contains good civil defense countermeasures in some other chapters, for example pages 318-322 which describe the 1953 Nevada nuclear tests on ignition and the conclusions for civil defense). The problem with reducing the association of nuclear weapon test effects data and civil defense countermeasures is that the latter will not be taken seriously by the public (in fact they will be ridiculed by the media and ignored by the public) without proper justification, i.e., proof that nuclear weapons tests have been done to validate the civil defense countermeasures.


Above: film of the Effects of Nuclear Weapons, beginning by debunking the radiation myths of Hiroshima. The 1977 edition of the Effects of Nuclear Weapons book, by Glasstone and Dolan, gives further data showing that there is evidence for "threshold" doses below which no negative effects occur:

"From the earlier studies of radiation-induced mutations, made with fruitflies [by Nobel Laureate Hermann J. Muller and other geneticists who worked on plants, who falsely hyped their insect and plant data as valid for mammals like humans during the June 1957 U.S. Congressional Hearings on fallout effects], it appeared that the number (or frequency) of mutations in a given population ... is proportional to the total dose ... More recent experiments with mice, however, have shown that these conclusions need to be revised, at least for mammals. [Mammals are biologically closer to humans, in respect to DNA repair mechanisms, than short-lived insects whose life cycles are too small to have forced the evolutionary development of advanced DNA repair mechanisms, unlike mammals that need to survive for decades before reproducing.] When exposed to X-rays or gamma rays, the mutation frequency in these animals has been found to be dependent on the exposure (or dose) rate ...

"At an exposure rate of 0.009 roentgen per minute [0.54 R/hour], the total mutation frequency in female mice is indistinguishable from the spontaneous frequency. [Emphasis added.] There thus seems to be an exposure-rate threshold below which radiation-induced mutations are absent ... with adult female mice ... a delay of at least seven weeks between exposure to a substantial dose of radiation, either neutrons or gamma rays, and conception causes the mutation frequency in the offspring to drop almost to zero. ... recovery in the female members of the population would bring about a substantial reduction in the 'load' of mutations in subsequent generations."

- Samuel Glasstone and Philip J. Dolan, The Effects of Nuclear Weapons, 3rd ed., 1977, pp. 611-3.


Capabilities of Nuclear Weapons_Part I -


Capabilities of Nuclear Weapons_Part II -




Above: Samuel T. Cohen invented the neutron bomb in 1958 by scaling down to very low yield the design of the REDWING-NAVAJO 5% fission, 95% fusion 'clean' nuclear test at Bikini Atoll in 1956. Cohen personally recruited his school friend, the famous strategist Herman Kahn, to the RAND Corporation. They realized in the 1950s that appearing reasonable or 'sane' will encourage fanatical terrorists. To deal with gun-carrying thugs, the police must descend to their level and likewise carry guns; they will be at a fatal disadvantage otherwise. 'Sanely' ignoring or steering clear of insane thugs will only encourage them; this is the 'sane' policy which pacifist nations tried with Hitler throughout the 30s. But if you want peace in an insane world, you may counter-intuitively need to build up 'insane' stockpiles of armaments or 'insanely' go out looking for trouble with power crazed dictators. Only by behaving in a threateningly violent way towards them can you ever hope to intimidate them into understanding that they must stop what they are doing and focus on improvement. Allowing Hitler the freedom to terrorise and massacre Jewish children and invalids seemed 'sane' to the 'honorable pacifist' 30s politician, but in retrospect we can see it would have been far safer for all concerned and far more humanitarian if the civilized world had gone a little more insane with him as soon as his inhuman activities began in 1933 or so, and displayed some anger and threatened credibly some violence in order to stop such abuses instead of appeasing and encouraging inhumane dictatorships.

On 29 September 1982, Elliott Abrams, the Assistant Secretary of State for Human Rights and Humanitarian Affairs in the U.S. Government, gave the following brilliant address to the Chicago World Affairs Council:

'It was primarily two things that saved us from the danger of nuclear war which we faced in the 1950s. The first was the development in the mid-1950s of an intellectual understanding of deterrence: that what deters nuclear war is not simply more weapons but a protected strategic force that can strike back even if it is attacked first. Such a force removes the temptation to strike first. It is vital to realize that the development of the theory of deterrence was the most important act of arms control in the postwar era; more important than any negotiation or treaty we have engaged in. The second thing that kept nuclear annihilation at a distance was the development of new weapons that were shaped by this theory of deterrence. ... The missile silo ... able to last out a first strike and retaliate; The ballistic missile submarine, which was more invulnerable because it was hidden in the depths of the sea; and the spy satellite, which for the first time gave an accurate accounting of the other side's strategic forces, thus reducing uncertainty and nervousness. Arms control agreements like SALT 1 (Strategic Arms Limitation Talks, number 1) would not have been possible without this weapon, because they would have been wholly impossible to verify.

'These facts constitute a genuine paradox: that the moral result of avoiding nuclear war was achieved through certain weapons. I believe we must face this paradox squarely ... We face an appalling danger in nuclear war and have limited resources to cope with it. Since the 1950s, one of the resources that has been most useful is the redesign of weapons so that they will contribute to a true deterrent.'


Herman Kahn's 1959 testimony to the 22-26 June 1959 U.S. Congressional Hearings on the Biological and Environmental Effects of Nuclear War:

Page 833:

'Let me start by making some remarks about quantitative computations. The most important reason for being quantitative is because one may, in fact, be able to calculate what is happening. Many of the witnesses have emphasized the uncertainities of thermonuclear war but ... Napoleon ... would have been impressed with the relevance of quantitative calculations; impressed with the accuracy with which people predict what a nuclear war is like. ... This is of some real interest; before World War II, for example, many of the staffs engaged in estimating the effects of bombing over-estimated the effects of bombing by large amounts. This was one of the main reasons that at the Munich Conference and earlier occasions the British and the French chose appeasement to standing firm or fighting. Incidentally, these staff calculations were more lurid than the worst imaginations of fiction. [Air bombing was predicted to destroy whole cities in firestorms in a single air raid, with clouds of poison gas killing everyone for hundreds of miles downwind, like fallout exaggerations from megaton surface bursts which assume that people are constantly outdoors on a smooth infinite unobstructed plane, etc.]'


Page 904:

'I would like to emphasise: Britain declared war on Germany in 1914. Britain declared war on Germany in 1939. If they had not been able to declare war in either of those 2 years, they would have had to let the Germans do whatever they wanted to do. ... I have a book ... which I recommend to those who want to exaggerate the impact of thermonuclear war. It is called Munich: Prologue to Tragedy, by Wheeler Bennett [this book is similar in many respects to President John F. Kennedy's own excellent book written from first hand experience in London when World War II broke out, on the perils of appeasement due to exaggeration of the effects of war, Why England Slept; remember that Hitler was widely praised by pacifists globally after he announced with a lot of hype but of course no sincerity, his grand '25-Year-Peace-Plan' on March 7, 1936]. Among other things Wheeler Bennett discusses why Chamberlain and Daladier folded. When they returned from Munich [where they enjoyed lovely tea and cakes while making useless pacifist treaties on bits of paper not worth a cent with the evil Adolf Hitler in 1938, being far too fearful of Hitler's ever increasing military power and its exaggerated explosive and poison gas effects to challenge him over his evil treatment of Jews even at that time] they were cheered by their people in Paris and London, because war had been averted. Over that weekend some people began to understand that war had been averted by a sellout of the worst sort. And on Monday some few were prepared to criticize. But ... The people who critized Chamberlain and Daladier, with a couple of exceptions, did not criticize them for not going to war; they said, "Hitler was bluffing, and you should have stood your ground".

'As far as we can tell, Hitler was not bluffing. The men who were in the room with him could see he was not bluffing. It was easy for the people back home to say he was bluffing, but not for the men who had the decision to make. The German people did not want war. The German Army did not want war. ... But Hitler seems to have been willing to have a war if he couldn't have his way.'


Pages 909-15:

'Our study distinguishes three types of deterrence in examining the implications for nonmilitary defense:

'Type I - Deterrence of a direct attack on the United States. ... It is not that the Soviets could reliably expect to be untouched, but that a situation might arise in which the Soviets might feel that going to war was the least risky of the available alternatives. ...

'Type II - Deterrence of extremely provocative behavior. The Soviets ... ask themselves if they can force the United States to accept peacefully the consequences of some extremely provocative action (say a large-scale attack on Europe or a Munich-type crisis). ... If the Soviets were not deterred then the United States might actually carry out an evacuation to try to persuade them to desist. If the evacuation did not persuade the Soviets to desist, then in the last resort the United States might decide that it was less risky to go to war than to acquiesce. ...

'Type III - Deterrence of moderately provocative actions. [Berlin Wall of 1961, Cuban missiles crisis of 1962, the Soviet backed war against South Vietnam, etc.] In this case it would be wishful thinking to expect deterrence to work most of the time. However, Soviet calculations which contemplate provoking the United States might be influenced by the existence of a U.S. plan for a crash nonmilitary defense program. ... Experience has shown that attempts to conduct large and overcoordinated programs tend to create inflexibility and to stifle new, unproven ideas or independent approaches.'


In the 22-26 June 1959 U.S. Congressional Hearings on the Biological and Environmental effects of Nuclear War following Kahn was the Nobel Laureate Willard F. Libby who stated on pages 924-5:

'We are led, when we review the history of man, ancient and modern, to the conclusion that it is wise to take out some insurance for our protection in the event that something goes wrong and peaceful international relations come to an end. The nature of the effects of modern nuclear weapons and the ranges over which these effects can produce casualties may provoke the question: "Is there really anything we can do?" My answer to this question is, "Yes." ...

'The committee will recall that we have announced that the fallout from the [15 megatons Castle-Bravo surface burst of] March 1, 1954, detonation at Bikini Atoll would have created radiation casualties in an area estimated at 7,000 square miles if no protective measures were taken. Casualties, seriously injured and dead from the initial effects of this bomb would have occurred in an area of perhaps 250 to 300 square miles [for people standing up, fully exposed to the effects of flying glass and thermal radiation from a 15 megatons bomb which is now long since obsolete and replaced by bombs with typically 100 times smaller yield, 150 kt]. There is a great difference between the two areas and I should like to focus on the need for protection and the capability for protecting the people in the 6,700 square miles or more beyond the range of initial blast, thermal and nuclear radiation. We can save them easily. We can lose them easily. ...

'The first action for anyone who does not already possess the knowledge is to learn what these weapons effects are. No one can be expected to act properly or at all for that matter on any problem unless he understands what makes it. It is necessary for people to learn about fallout, about nuclear radiation, about the effects of nuclear radiation on people, animals, plants, food, water: the things that are immutably linked to life.'


Dr Paul Tompkins of the U.S. Naval Radiological Defense Laboratory stated on pages 953-4 of the Hearings:

'I had the experience of being on the Manhattan Division [developing the first nuclear weapons] in 1943. I am very familiar with the psychology of revulsion against the effect these weapons can produce. ... the results are catastropic enough in their own right. They need no imaginary amplification. The facts themselves are bad enough. However, it is crucially important to look those facts squarely in the face if one is going to face the necessity for survival if against your will or despite anything you can do about it, it is imposed on you. As far as I am concerned, if the chips ever go down and avoiding a conflict is not possible in the scheme of human events of the future, I for one do not propose to see this Nation come out the loser. ...

'The world of the future is going to be dangerous. The human capacity to inflict such damage will inevitably be there. The threat of the employment of that damage is something with which we will have to live unless something very drastic changes in our international relations. ... I personally never expect to see consequences of the type displayed on these maps. ...

'As far as I am personally concerned, by looking at the problems, understanding what they are composed of, and by necessity being an incurable optimist, I never expect to see a war of this kind happen. It is possible that more limited engagements of a more sharply defined type will be fought under the sword of Damocles hanging over our heads some time in the future. If so, let us be prepared for that. So, that at least, is my personal view as to the role that the nonmilitary defense should play, and it will never be perfect.'


Chairman Holifield then concluded the 1959 Hearings on pages 954-5 with the following words:

'These long technical testimonies were necessary in order that the basic record might be presented in as fair a way as we know how. In conclusion I want to say the challenge of the nuclear age is enormous and inescapable.

'The facts of nuclear war and the effects of nuclear war once established will not fade away because they are unpleasant. If we are prudent we will not ignore them.

'They will not disappear. Each of us must accept personal responsibilities because the nuclear war is a personal threat to our survival.

'The problem is too large to leave solely in the hands of the diplomats and the generals.'


I've blogged before about Samuel Glasstone, Philip J. Dolan, their book The Effects of Nuclear Weapons 1977, and the neutron bomb which they avoid mentioning in that book but discuss elsewhere, such as in Dolan's classified manual Capabilities of Nuclear Weapons DNA-EM-1 and Glasstone's Microsoft Encarta encyclopedia article on Nuclear Weapons. The neutron bomb is the number 1 reason why a new edition of The Effects of Nuclear Weapons is needed, or at least open publication of Capabilities of Nuclear Weapons DNA-EM-1. The purpose of nuclear weapons in the world since 1945 has been to end world wars. They succeeded in ending WWII and preventing WWIII. But does it make sense to abolish them now that WWIII is no longer such a threat due to the collapse of communism? Certainly, thousands of high-yield strategic weapons may now be considered a "threat" of World War, rather than a vital deterrent to such a war. But some nuclear weapons are still needed to deter a smaller nuclear threat from proliferation, terrorist states, and so on:



So it stands to reason that the nuclear deterrent needs to be redirected towards the current smaller scale nuclear threat, now that the Cold War has been fading into history for twenty years and strategic stockpiles are diminishing. As General Charles de Gaulle famously observed, "generals are always fighting the last war". Things need to be updated. The neutron bomb is perfect: it is only effective for low kiloton yields, so it preserves and indeed enhances the credible deterrent aspect of nuclear weapons, while averting all risks of collateral damage (there is no blast, thermal or local fallout threat due to the low 1-2 kilotons yield of which 80% of the 17.6 MeV deuterium-tritium fusion energy comes out as 14.1 MeV neutrons - which, unlike 0.025 eV reactor moderated neutrons, can't be stopped by thin plastic, cadmium foil, etc. contrary to pseudoscientific propaganda - and the 500 metres burst altitude).


“The first objection to battlefield ER weapons is that they potentially lower the nuclear threshold because of their tactical utility. In the kind of potential strategic use suggested where these warheads would be held back as an ultimate countervalue weapon only to be employed when exchange had degenerated to the general level, this argument loses its force: the threshold would long since have been crossed before use of ER weapons is even contemplated. In the strategic context, it is rather possible to argue that such weapons raise the threshold by reinforcing the awful human consequences of nuclear exchange: the hostages recognize they are still (or once again) prisoners and, thus, certain victims.”


- Dr Donald M. Snow (Associate Professor of Political Science and Director of International Studies, University of Alabama), “Strategic Implications of Enhanced Radiation Weapons”, Air University Review, July-August 1979 issue (online version linked here).



“You published an article ‘Armour defuses the neutron bomb’ by John Harris and Andre Gsponer (13 March, p 44). To support their contention that the neutron bomb is of no military value against tanks, the authors make a number of statements about the effects of nuclear weapons. Most of these statements are false ... Do the authors not realise that at 280 metres the thermal fluence is about 20 calories per square centimetre – a level which would leave a good proportion of infantrymen, dressed for NBC conditions, fit to fight on? ... Perhaps they are unaware of the fact that a tank exposed to a nuclear burst with 30 times the blast output of their weapon, and at a range about 30 per cent greater than their 280 metres, was only moderately damaged, and was usable straight afterwards. ... we find that Harris and Gsponer’s conclusion that the ‘special effectiveness of the neutron bomb against tanks is illusory’ does not even stand up to this rather cursory scrutiny. They appear to be ignorant of the nature and effects of the blast and heat outputs of nuclear weapons, and unaware of the constraints under which the tank designer must operate.”


- C. S. Grace, Royal Military College of Science, Shrivenham, Wiltshire, New Scientist, 12 June 1986, p. 62.



'The neutron bomb, so-called because of the deliberate effort to maximize the effectiveness of the neutrons, would necessarily be limited to rather small yields - yields at which the neutron absorption in air does not reduce the doses to a point at which blast and thermal effects are dominant. The use of small yields against large-area targets again runs into the delivery problems faced by chemical agents and explosives, and larger yields in fewer packages pose a less stringent problem for delivery systems in most applications. In the unlikely event that an enemy desired to minimize blast and thermal damage and to create little fallout but still kill the populace, it would be necessary to use large numbers of carefully placed neutron-producing weapons burst high enough to avoid blast damage on the ground [500 metres altitude for a neutron bomb of 1 kt total yield], but low enough to get the neutrons down. In this case, however, adequate radiation shielding for the people would leave the city unscathed and demonstrate the attack to be futile.'

- Dr Harold L. Brode, RAND Corporation, Blast and Other Threats, pp. 5-6 in Proceedings of the Symposium on Protective Structures for Civilian Populations, U.S. National Academy of Sciences, National Research Council, Symposium held at Washington, D.C., April 19-23, 1965.

Samuel Cohen, as discussed in earlier posts here and here, argues that his neutron bomb is safer than the high-yield relatively indiscriminate (i.e. collateral damage causing) strategic nuclear weapons now stockpiled. See this linked post for a detailed review of the history of the weapon and the hysterically lying propaganda it generated. Cohen invented the neutron bomb in 1958 at the RAND Corporation: it was a miniaturized successor to the 95% "clean" nuclear test Navajo of Operation Redwing in 1956. He summarizes the history of the neutron bomb in his online lecture (presented in front of an audience which included Edward Teller), Nuclear terrorism: a credible threat?

During research for an Electronics World article on EMP published in November 1994, at the suggestion of the Atomic Weapons Establishment Library, we obtained Dolan's declassified 1,651 pages long Capabilities of Nuclear Weapons. This information is vital for discrediting and debunking the media hype and ignorance of the wide variety of nuclear weapons effects resulting from different kinds of detonation depending on height and depth of burst in conjunction with weapon design factors such as casing and fission yield, many combinations of which produce no nuclear radiation injuries, thermal burns or blast effects. The information published in the widely cited unclassified 1977 Glasstone and Dolan book, The Effects of Nuclear Weapons, is described in a footnote on page 1 of EM-1 as merely a "qualitative" introductory supplement to the secret manual EM-1.

UPDATE (13 JULY 2015):


Above: the actual Nevada nuclear test EMP effects data in the 1964 Capabilities of nuclear weapons page 13-2 is a summary of E.G. & G.s 1961 secret report by B. J. Stralser, Electromagnetic Effects from Nuclear Tests, which describes the EMP effects on tripping circuit breakers over 30 miles away from kiloton yield Nevada tower bursts.  Additional EMP data was obtained in the 1962 Nevada surface burst Small Boy, a deliberate EMP effects test.

Capabilities of Nuclear Weapons 1964 Edition

Internet archive PDF location: https://archive.org/details/CapabilitiesOfNuclearWeapons1964

1964 Capabilities of Nuclear Weapons, the one which compares American nuclear fallout predictions to the 1956 British Buffalo Round 2 ground burst nuclear test at Maralinga, Australia, has been kindly emailed to me as a PDF by

Fina Martinez-Myers
702-794-5112

Nuclear Testing Archive
National Security Technologies, LLC
Contractor to the U.S. Department of Energy

Title: TM 23-200/OP NAV INSTRUCTION 03400/C/ AFM 136-1/FMFM 11-2 "CAPABILITIES OF NUCLEAR WEAPONS (U) ( 1964 )
Author(s):
Subject Terms: NUCLEAR WEAPONS
Document Location: Location - NNSA/NSO Nuclear Testing Archive Address - P.O. Box 98521 City - Las Vegas State - NV Zip - 89193-8521 Phone - (702)794-5106 Fax - (702)794-5107 Email - CIC@NV.DOE.GOV
Document Type: REPORT
Publication Date: 1964 Dec 31
Declassification Status: Declassified
Document Pages: 0214
Accession Number: NV0105483
OpenNet Entry Date: 2006 Jul 01



Buffalo Round 2 was a 1.4 kiloton fission bomb (an AWRE declassified photo of bomb being set up for the test is shown above) surface burst on Maralinga soil, which is calcium carbonate topped with a thin layer of silicate sand.  This Maralinga soil produced silicate sand (Nevada test like) fallout for tower bursts like Buffalo Round 1 which produced no significant crater, proving that for low altitude bursts the fallout is caused by the sweep-up of loose desert sand by the afterwinds and updraft under the rising fireball.  But for the surface burst Buffalo Round 2, the fallout particles were composed of calcium oxide surrounded by calcium carbonate which must have come from the calcium calcium subsoil, like the American tests on coral islands in Bikini and Eniwetok Atoll.  This proved that the cratering ejecta provides the fallout material in a surface burst.  The 1964 Capabilities of Nuclear Weapons, TM 23-200, uses this British surface burst to check its fallout model (the illustration was deleted from the 1972 edition and does not appear in the 1957 edition):

Fig 4-4 in 1964 Capabilities of Nuclear Weapons compares the actual fallout pattern from the 1956 Buffalo-2 surface burst in Australia with the idealized model based on Nevada tests.  For a different plot of this Buffalo-1 fallout pattern, please see http://www.dtic.mil/docs/citations/ADA956123:

Tuesday, August 25, 2009

Our Nuclear Future: Facts, Dangers, and Opportunities, by Edward Teller and Albert L. Latter



Our Nuclear Future: Facts, Dangers, and Opportunities, by Edward Teller and Albert L. Latter (Criterion Books, New York, 1958), page 139:

"It is generally believed that the First World War was caused by an arms race. For some strange reason most people forget that the Second World War was brought about by a situation which could be called a race in disarmament. The peace-loving and powerful nations divested themselves of their military power. When the Nazi regime in Germany adopted a program of rapid preparation for war, the rest of the world was caught unawares. At first they did not want to accept the fact of this menace. When the danger was unmistakable, it was too late to avert a most cruel war, and almost too late to stop Hitler short of world conquest."


Above: 9.3 megatons Hardtack-Poplar fireball in 1958. This photo has only been recently released with the name of the test. Maybe the proximity of the aircraft (which survived) creates the wrong (not so doomsday-like) impression?



Above: a different regime of nuclear effects phenomena. Colour photos now available of the Teak fireball and surrounding red shock wave air glow. The bomb was 3.8 Mt (50% fission yield fraction) detonated at 77 km altitude nearly over Johnston Island, and was photographed in 1958 from a mountain top on Maui, 794 nautical miles away. As we mentioned in a previous post, Teller and Latter related the case of the Plumbbob-John air burst of 18 July 1957, where five men stood at ground zero (directly below the rocket carried bomb burst) without injury (although they were not looking directly at the fireball at zero time, or they would have received retinal burns). Teak was a similar case: proving that nuclear weapons can be used (for instance as high altitude bursts to destroy incoming missiles) without hazards, if they are designed to minimize prompt gamma ray output and thus EMP radiation (this can be done by the use of clean nuclear weapons with suitable tamper materials that will minimize the high-energy secondary gamma ray yield when hit by neutrons).

Teller and Latter explain that radiological warfare is a benefit compared to the carnage of using conventional weapons

"The lifetime of the radioactive material may be long enough to give an opportunity to the people to escape from the contaminated area [longer half lives mean that the chance of a radioactive atom decaying in any given second is lower, so the specific activity is lower; e.g. if you have N radioactive atoms with a half life of T time units, then the decay rate is simply (lne2)*N/T ~ 0.693N/T atoms decaying per unit time, thus the longer the half-life T the lower the radioactivity level that a given number of radioactive atoms produces, where 1/(lne2) ~ 1.44 which is the factor by which you must multiply the half-life to get the statistical mean life, defined as the time to zero activity if the initial straight-line asymptotic gradient of the decay curve, i.e. exp(-AT) ~ 1 - AT, were followed instead of the exponential curve which of course is itself just a mathematical idealization because it can never reach zero, despite the quantum reality check that in the real world some day the final radioactive atom will decay, and zero activity will be attained after a finite time]. At the same time, one may precipitate almost all the activity near the explosion [using shallow underground detonations produced by earth penetrator warheads, like Redwing-Seminole 13.7 kt shot surface burst inside a water tank at Eniwetok Atoll in 1956 to simulate shallow burial] so that distant localities would not be seriously affected. It is conceivable, therefore, that radiological warfare could be used in a humane manner. By exploding a weapon of this kind near an island one might be able to force evacuation without loss of life. No instrument, not even a weapon, is evil in itself. Everything depends on the way in which it is used."

- Edward Teller and Albert L. Latter, Our Nuclear Future: Facts, Dangers, and Opportunities (Criterion Books, New York, 1958), p. 136.



Above: Redwing-Seminole 13.7 kt shot inside a water tank at Eniwetok Atoll in 1956 to simulate shallow burial. The Wilson cloud shields much of the thermal radiation, while the enhanced cratering action deposits almost all of the radioactivity in the local fallout, seen here as the throwout from the crater. Teller and Latter explain how this kind of radiological warfare could make enemy forces evacuate an island like Iwo Jima (where the island had to be shelled with conventional weapons and flame-throwers, resulting in the death of 21,703 of the 22,786 Japanese soldiers, and the death of 6,825 allied soldiers) before receiving a lethal radiation dose, without any of the immoral carnage of shelling or other gross effects from conventional weapons. Another moral use of nuclear weapons that circumvents the carnage of conventional warfare is air bursts at altitudes just over the maximum fireball radius, to clear the conventional weapons defending coastal areas and beaches prior to an invasion such as the D-day landings: neutron-induced activity covers only a small area and the dose rates are relatively low once the aluminium-28 has decayed with a half-life of only 2.3 minutes.

Sr-90 exaggerations

Teller and Latter also explain how the threat from strontium-90 is grossly exaggerated. Sr-90 is more important than the equally long-lived Cs-137 because Cs-137 like potassium resides in tissues whose cells are regularly renewed and thus is rapidly eliminated from the body, whereas a small fraction of Sr-90 ends up in the bones for life, creating a larger dose. (The I-131 problem and its countermeasures was discussed in detail earlier in the blog post linked here.) Once the fallout comes down, there is a brief spell of danger while the fallout particles are physically present on the leaves and stems of crops, but this can be washed off and wind and rain soon wash the fallout particles into the soil where root uptake is important for the soluble component of the fallout activity. In coral soil or limestone based soil there is an abundance of calcium (coral is calcium carbonate) so chemically similar strontium gets crowded out and diluted.

In most American soils, however, there is less calcium, so with an average natural strontium to calcium mass abundance of 1:100, there is only about 27 kg of soluble natural strontium per acre. Adult humans have a natural strontium to calcium mass ratio of just 1:1,400 and contain only 0.7 gram of natural strontium. Hence, strontium uptake via the food chain from soil to human beings is discriminated against (relative to calcium) by the factor 14. These figures allow the dilution of strontium-90 to be calculated. Each step of the food chain discriminates against strontium relative to calcium (see also pages 1521-9 of the U.S. Congressional Hearings The Nature of Radioactive Fallout and Its Effects on Man, May-June 1957, which states on page 1529: "100 metres [depth] of sea water has 370 grams of dissolved calcium per square foot compared to the average of 20 grams per square foot for the top 2.5 inches of soil which absorbs and holds the fallout radiostrontium"):

(1) Soil: 1 g of Sr for every 100 g of Ca (protection factor = 1)

(2) Plants: 1 g of Sr for every 140 g of Ca (protection factor = 140/100 = 1.4)

(3) Milk: 1 g of Sr for every 980 g of Ca (protection factor = 980/100 = 9.8 for root uptake of soluble Sr in soil by grass, or 980/140 = 7 for Sr ingestion by cattle from fresh fallout particles still adhering directly to the grass)

(4) Human: 1 g of Sr for every 1,400 g of Ca (protection factor of 1400/100 = 14 for fallout in the soil, or 1400/140 = 10 for fallout on plants which are ingested by cattle)

J. L. Kulp's report "Sr-90 in Man" published in Science, 8 February 1957, vol. 125, p. 219, showed that in 1955 the average diet for the human population of the United States contained 7 micro-microcuries of Sr-90 per gram of calcium. It also reported an average worldwide total body burden of 0.12 micro-microcuries per gram of skeletal calcium, and a concentration in young children 3-4 times higher (due to growing bones and thus greater calcium intake from drinking milk).



In 1996, half a century after the nuclear detonations, data on cancers from the Hiroshima and Nagasaki survivors was published by D. A. Pierce et al. of the Radiation Effects Research Foundation, RERF (Radiation Research vol. 146 pp. 1-27; Science vol. 272, pp. 632-3) for 86,572 survivors, of whom 60% had received bomb doses of over 5 mSv (or 500 millirem in old units) suffering 4,741 cancers of which only 420 were due to radiation, consisting of 85 leukemias and 335 solid cancers.

‘Today we have a population of 2,383 [radium dial painter] cases for whom we have reliable body content measurements. . . . All 64 bone sarcoma [cancer] cases occurred in the 264 cases with more than 10 Gy [1,000 rads], while no sarcomas appeared in the 2,119 radium cases with less than 10 Gy.’

- Dr Robert Rowland, Director of the Center for Human Radiobiology, Bone Sarcoma in Humans Induced by Radium: A Threshold Response?, Proceedings of the 27th Annual Meeting, European Society for Radiation Biology, Radioprotection colloquies, Vol. 32CI (1997), pp. 331-8.

Zbigniew Jaworowski, 'Radiation Risk and Ethics: Health Hazards, Prevention Costs, and Radiophobia', Physics Today, April 2000, pp. 89-90:

‘... it is important to note that, given the effects of a few seconds of irradiation at Hiroshima and Nagasaki in 1945, a threshold near 200 mSv may be expected for leukemia and some solid tumors. [Sources: UNSCEAR, Sources and Effects of Ionizing Radiation, New York, 1994; W. F. Heidenreich, et al., Radiat. Environ. Biophys., vol. 36 (1999), p. 205; and B. L. Cohen, Radiat. Res., vol. 149 (1998), p. 525.] For a protracted lifetime natural exposure, a threshold may be set at a level of several thousand millisieverts for malignancies, of 10 grays for radium-226 in bones, and probably about 1.5-2.0 Gy for lung cancer after x-ray and gamma irradiation. [Sources: G. Jaikrishan, et al., Radiation Research, vol. 152 (1999), p. S149 (for natural exposure); R. D. Evans, Health Physics, vol. 27 (1974), p. 497 (for radium-226); H. H. Rossi and M. Zaider, Radiat. Environ. Biophys., vol. 36 (1997), p. 85 (for radiogenic lung cancer).] The hormetic effects, such as a decreased cancer incidence at low doses and increased longevity, may be used as a guide for estimating practical thresholds and for setting standards. ...

‘Though about a hundred of the million daily spontaneous DNA damages per cell remain unrepaired or misrepaired, apoptosis, differentiation, necrosis, cell cycle regulation, intercellular interactions, and the immune system remove about 99% of the altered cells. [Source: R. D. Stewart, Radiation Research, vol. 152 (1999), p. 101.] ...

‘[Due to the Chernobyl nuclear accident in 1986] as of 1998 (according to UNSCEAR), a total of 1,791 thyroid cancers in children had been registered. About 93% of the youngsters have a prospect of full recovery. [Source: C. R. Moir and R. L. Telander, Seminars in Pediatric Surgery, vol. 3 (1994), p. 182.] ... The highest average thyroid doses in children (177 mGy) were accumulated in the Gomel region of Belarus. The highest incidence of thyroid cancer (17.9 cases per 100,000 children) occurred there in 1995, which means that the rate had increased by a factor of about 25 since 1987.

‘This rate increase was probably a result of improved screening [not radiation!]. Even then, the incidence rate for occult thyroid cancers was still a thousand times lower than it was for occult thyroid cancers in nonexposed populations (in the US, for example, the rate is 13,000 per 100,000 persons, and in Finland it is 35,600 per 100,000 persons). Thus, given the prospect of improved diagnostics, there is an enormous potential for detecting yet more [fictitious] "excess" thyroid cancers. In a study in the US that was performed during the period of active screening in 1974-79, it was determined that the incidence rate of malignant and other thyroid nodules was greater by 21-fold than it had been in the pre-1974 period. [Source: Z. Jaworowski, 21st Century Science and Technology, vol. 11 (1998), issue 1, p. 14.]’

W. L. Chen, Y. C. Luan, M. C. Shieh, S. T. Chen, H. T. Kung, K. L. Soong, Y. C. Yeh, T. S. Chou, S. H. Mong, J. T. Wu, C. P. Sun, W. P. Deng, M. F. Wu, and M. L. Shen, ‘Is Chronic Radiation an Effective Prophylaxis Against Cancer?’, published in the Journal of American Physicians and Surgeons, Vol. 9, No. 1, Spring 2004, page 6, available in PDF format here:

‘An extraordinary incident occurred 20 years ago in Taiwan. Recycled steel, accidentally contaminated with cobalt-60 ([low dose rate, gamma radiation emitter] half-life: 5.3 y), was formed into construction steel for more than 180 buildings, which 10,000 persons occupied for 9 to 20 years. They unknowingly received radiation doses that averaged 0.4 Sv, a collective dose of 4,000 person-Sv. Based on the observed seven cancer deaths, the cancer mortality rate for this population was assessed to be 3.5 per 100,000 person-years. Three children were born with congenital heart malformations, indicating a prevalence rate of 1.5 cases per 1,000 children under age 19.

‘The average spontaneous cancer death rate in the general population of Taiwan over these 20 years is 116 persons per 100,000 person-years. Based upon partial official statistics and hospital experience, the prevalence rate of congenital malformation is 23 cases per 1,000 children. Assuming the age and income distributions of these persons are the same as for the general population, it appears that significant beneficial health effects may be associated with this chronic radiation exposure. ...’

‘Professor Edward Lewis used data from four independent populations exposed to radiation to demonstrate that the incidence of leukemia was linearly related to the accumulated dose of radiation. ... Outspoken scientists, including Linus Pauling, used Lewis’s risk estimate to inform the public about the danger of nuclear fallout by estimating the number of leukemia deaths that would be caused by the test detonations. In May of 1957 Lewis’s analysis of the radiation-induced human leukemia data was published as a lead article in Science magazine. In June he presented it before the Joint Committee on Atomic Energy of the US Congress.’ – Abstract of thesis by Jennifer Caron, Edward Lewis and Radioactive Fallout: the Impact of Caltech Biologists Over Nuclear Weapons Testing in the 1950s and 60s, Caltech, January 2003.

Dr John F. Loutit of the Medical Research Council, Harwell, England, in 1962 wrote a book called Irradiation of Mice and Men (University of Chicago Press, Chicago and London), discrediting the pseudo-science from geneticist Edward Lewis on pages 61, and 78-79:

‘... Mole [R. H. Mole, Brit. J. Radiol., v32, p497, 1959] gave different groups of mice an integrated total of 1,000 r of X-rays over a period of 4 weeks. But the dose-rate - and therefore the radiation-free time between fractions - was varied from 81 r/hour intermittently to 1.3 r/hour continuously. The incidence of leukemia varied from 40 per cent (within 15 months of the start of irradiation) in the first group to 5 per cent in the last compared with 2 per cent incidence in irradiated controls. …

‘What Lewis did, and which I have not copied, was to include in his table another group - spontaneous incidence of leukemia (Brooklyn, N.Y.) - who are taken to have received only natural background radiation throughout life at the very low dose-rate of 0.1-0.2 rad per year: the best estimate is listed as 2 x 10-6 like the others in the table. But the value of 2 x 10-6 was not calculated from the data as for the other groups; it was merely adopted. By its adoption and multiplication with the average age in years of Brooklyners - 33.7 years and radiation dose per year of 0.1-0.2 rad - a mortality rate of 7 to 13 cases per million per year due to background radiation was deduced, or some 10-20 per cent of the observed rate of 65 cases per million per year. ...

‘All these points are very much against the basic hypothesis of Lewis of a linear relation of dose to leukemic effect irrespective of time. Unhappily it is not possible to claim for Lewis’s work as others have done, “It is now possible to calculate - within narrow limits - how many deaths from leukemia will result in any population from an increase in fall-out or other source of radiation” [Leading article in Science, vol. 125, p. 963, 1957]. This is just wishful journalese.

‘The burning questions to me are not what are the numbers of leukemia to be expected from atom bombs or radiotherapy, but what is to be expected from natural background .... Furthermore, to obtain estimates of these, I believe it is wrong to go to [1950s inaccurate, dose rate effect ignoring, data from] atom bombs, where the radiations are qualitatively different [i.e., including effects from neutrons] and, more important, the dose-rate outstandingly different.’



Our Nuclear Future: Facts, Dangers, and Opportunities, by Edward Teller and Albert L. Latter (Criterion Books, New York, 1958):

Page 167:

'If we continue to consume [fossil] fuel at an increasing rate, however, it appears probable that the carbon dioxide content of the atmosphere will become high enough to raise the average temperature of the earth by a few degrees. If this were to happen, the ice caps would melt and the general level of the oceans would rise. Coastal cities like New York and Seattle might be innundated. Thus the industrial revolution using ordinary chemical fuel could be forced to end ... However, it might still be possible to use nuclear fuel.'

Page 147:

'All the energy in that Nevada explosion was not quite sufficient to evaporate the water droplets in a cloud one mile broad, one mile wide, and one mile deep. This is not a very big rain cloud. ... Nuclear explosions are violent enough. But compared to the forces of nature - compared even with the daily release of energy from not particularly stormy weather - all our bombs are puny.'


Above: Dr Zaius in Planet of the Apes simultaneously held religious and scientific positions, leading him to suppress scientific findings which contradicted the religious dogma. You know, like my suppression by Britain's Open University physics department chairman, Professor Russell Stannard, author of books like Science and the Renewal of Belief:
"offering fresh insight into original sin, the trials experienced by Galileo, the problem of pain, the possibility of miracles, the evidence for the resurrection, the credibility of incarnation, and the power of steadfast prayer. By introducing simple analogies, Stannard clears up misunderstandings that have muddied the connections between science and religion, and suggests contributions that the pursuit of physical science can make to theology",


arguing that science should be alloyed with dogma again as a "unification" of physics and religion, as it was in the time of Galileo.
Actually, this makes some sense when you recognise that Stannard takes "physics" to include the religious belief in uncheckable pseudoscience: a landscape of 10500 different universes to account for the vast number of possible particle physics theories which can be generated by the 100 or more moduli for the shape of the unobservably small compactification of 6-dimensions assumed to exist in the speculative Calabi-Yau manifold of string theory, as well as other rubbish like Aspect's alleged "experimental evidence" on entanglement via correlation of particle spins:

"In some key Bell experiments, including two of the well-known ones by Alain Aspect, 1981-2, it is only after the subtraction of ‘accidentals’ from the coincidence counts that we get violations of Bell tests. The data adjustment, producing increases of up to 60% in the test statistics, has never been adequately justified. Few published experiments give sufficient information for the reader to make a fair assessment." - http://arxiv.org/PS_cache/quant-ph/pdf/9903/9903066v2.pdf

"The quantum collapse [in the mainstream interpretation of quantum mechanics, where a wavefunction collapse occurs whenever a measurement of a particle is made] occurs when we model the wave moving according to Schroedinger (time-dependent) and then, suddenly at the time of interaction we require it to be in an eigenstate and hence to also be a solution of Schroedinger (time-independent). The collapse of the wave function is due to a discontinuity in the equations used to model the physics, it is not inherent in the physics." - Thomas Love, California State University.

As a physics student with a mechanism for gravity that predicted correctly the cosmological acceleration two years ahead of its discovery, Russell didn't even personally reply but just passed my paper to Dr Bob Lambourne who in 1996 wrote to me that my prediction for quantum gravity and cosmological acceleration was not important because it is not within the metaphysical, non-falsifiable domain of Professor Edward Witten's stringy speculations on 11-dimensional 'M-theory'. In 1986, Professor Russell was awarded the Templeton Project Trust Award for ‘significant contributions to the field of spiritual values; in particular for contributions to greater understanding of science and religion’. So who says the Planet of the Apes story is completely fictional, aside from a little hairiness?


Above: Nova (Linda Harrison) portrayed in 3978 AD, in the 1968 movie Planet of the Apes. A nuclear war destroys 'civilization' leaving beautiful dumb girls like Nova. However, the film is politically correct and adds mutant aggressive apes to earth's survivors to make sure that the nuclear war 'survivors will envy the dead' (as Nikita Khrushchev claimed, quoted in Pravda, 20 July 1963), just as politically correct dogma requires.


Above: another view; maybe the alleged evidence for health benefits like enhanced lifespan and lower cancer rates from low level residual radiation in Hiroshima and Nagasaki contribute to her very healthy appearance?



‘Planet of the Apes’ started out as a Pierre Boulle novel in which a couple discover a bottle containing the story of how humans become dictatorial, slovenly and lazy by using apes as slaves to do their work, until there is a rebellion and an ape revolution reverses the situation. Humans are too cowardly to fight back and submit to the chains of oppression. Apes become the masters of human slaves. The twist at the end of the novel occurs when Boulle reveals that the story in a bottle has not been found by humans but rather by a couple of apes (who have read it with astonishment and dismiss the story just as a silly hoax).



The film, however, is another story and is based on a film script by ‘Twilight Zone’ master Rod Serling and Michael Wilson, and in some ways is a reversal of the underlying politics of Boulle's book (producer Arthur P. Jacobs contacted Pierre Boulle and asked him to take a look at the script; Boulle responded on April 29, 1965 that "he truly did not like the Statue of Liberty ending, feeling that it cheapened the story as a whole, and served as the 'temptation from the Devil'...") Instead of the disaster coming through the pacifist humans refusing to fight against oppression, it instead occurs (in the film) as a result of humans fighting one another with nuclear weapons and destroying the cities of human civilization, giving the apes in jungles the opportunity to take over the planet. However, some parts of Pierre Boulle's original plot are resurrected in the sequels to the 1968 film, where the mechanism by which the apes take over the planet is the use of ape slaves who rebel.



The first film, in the script by Rod Serling, starts with three astronauts taking an 18-month (ship time) journey supposed to cover a distance of 320 light years in 2,000 earth years, at a velocity of 320/2000 = 0.16c. At 16% of light velocity, ship time travels at just [1 – 0.162]1/2 = 0.987 of the rate of earth time, so the ship time passing would be 1974 years, not the 18 months that is claimed in the film. Deep sleep cubicles in the ship are used to keep the astronauts alive with the use of minimal resources during the journey. Serling changed the twist that Boulle used by having the ship hit an asteroid half way into the trip, cracking the plastic cubicle of the female astronaut and causing her to prematurely age and die in her sleep. This causes the computer to automatically abort the mission and turn the ship back towards the earth, which in the screenplay by Serling is discovered when the computer tapes are read later (this episode was omitted from the film). The ship, returning to a grossly altered earth with no surviving runways, crash lands in a lake.



The astronauts discover that on this planet the apes rule dumb, ignorant humans. In the final scene, the twist revealing that the planet is actually the earth (which should have been pretty obvious from the similar gravity, atmosphere, sun, moon, star positions in the sky, and so forth) is done by showing the Statue of Liberty half buried by beach sand. A nuclear war has apparently occurred during the 2,000 years that elapsed. The second film in the series, Beneath the Planet of the Apes, furthers this theme by having the surviving astronaut Taylor (Charlton Heston, appropriately nicknamed ‘Charlie Hero’ off-set by the Chimpanzee actor Roddy McDowell) and beautiful savage girl Nova discover an underground colony of surviving radiation-mutated humans worshipping a cobalt-cased ‘alpha-omega doomsday bomb’. Sublime political message: ‘the survivors in a nuclear war will have to live for thousands of years underground and will be mutants that envy the dead.’ Not exactly the truth about the harmlessness of slowly-decaying (i.e. low dose rate) cobalt fallout (which can simply be swept up and buried long before anyone gets a dangerous dose) compared to the survivable but more dangerous fast-decaying (i.e. high dose rate) fission products:

'Everybody's going to make it if there are enough shovels to go around...Dig a hole, cover it with a couple of doors and then throw three feet of dirt on top. It's the dirt that does it.'

- Thomas K. Jones, Deputy Under Secretary of Defense for Strategic and Theater Nuclear Forces, Research and Engineering, LA Times 16 January 1982.










The apes follow them underground and, after his girlfriend Nova is killed in the fighting, the bitter, love-cheated Charlie Hero decides to destroy the planet in anger, finally succeeding by falling on to the doomsday button which ends the story, just as in Pierre Boulle’s previous film Bridge on the River Kwai the crazy hero falls on the detonator switch when shot, blowing up the bridge. Fortunately the alpha-omega bomb - presumably because it's capable of destroying the whole planet - is the one bomb made which doen’t have a permissive action link and require authority codes and dual key activation to arm, with the key holes too far apart for one person to simultaneously turn both together. After all, you don't want to make such a dangerous bomb very hard to accidentally set off, do you, at least not if you're using it as the ending to a fine film?



This fictional tale, in lieu of the full facts on nuclear weapons effects, helped to cement the myth in popular culture that nuclear weapons are a danger to human civilization, rather than deterring world war.

Fraction of activity in local fallout

One of the interesting things about this 1958 book by Teller and Latter is that it gives details of how the atmospheric Nevada testing tried to minimise local fallout. E.g., on page 98, they claim that if the test is on a 'tower so tall that the fireball cannot touch the surface ... the amount of close-in fallout is reduced from eighty per cent to approximately five per cent.'

However, this figure is misleading! The actual percentage of the gamma activity in local fallout from 30 Nevada tower bursts at heights exceeding 100Wkt1/3 feet (it did not decrease at heights above that, due to the contribution to local fallout from the condensed iron oxides produced by the fireball enveloping the tower material) was 20% of that of a surface burst, not 5%.

This 20% figure comes from Jack C. Greene, et al., Response to DCPA Questions on Fallout, Prepared by the Subcommittee on Fallout, Advisory Committee on Civil Defense of the U.S. National Academy of Sciences, U.S. Defense Civil Preparedness Agency, DCPA Research Report No. 20, November 1973. This report was written by a committee composed of top experts on fallout such as Dr Carl F. Miller who had collected the fallout at Castle and Plumbbob and developed the fallout model used by DCPA, and Dr R. Robert Rapp of RAND Corporation who had analyzed the effect of the toroidal distribution of activity in the mushroom clouds of Bravo and Zuni upon the fallout pattern.

The proportion of activity in local fallout depends on which nuclides you are considering, so it is a different number for gamma and beta activity and for different times after burst. If you quote the percentage of unfractionated activities (like Zr-95) in local fallout, that is much larger than the percentage of the fractionated I-131, Cs-137, Sr-89 and Sr-90 in local fallout. Most of the fractionated nuclide decay chains have somewhat different volatilities, so they fractionate to different degrees. Therefore, there is no natural way to define what is meant by the fraction of activity that comes down in local fallout. One artificial way to define it is to consider the local fallout fraction as the gamma exposure rate normalized to 1 hour after burst an integrated over the area of the local fallout pattern. This includes fractionation to the extent that it reduces the average gamma exposure rate at the reference time of one hour after burst.

On page 3 they note that the radiation level at a fixed time after burst from a unit mass of fallout per unit area increases as the particle size decreases, e.g. the radiation level for a given deposition density at a fixed time after burst actually increases as you move further downwind from ground zero:

‘This observation is consistent with the consensus that radiochemical fractionation causes this ration to decrease with increasing particle size.’

In other words, the value of the ratio (R/hr at 1 hour)/(fission kiloton/square mile) is smaller for highly fractionated close-in fallout (which is depleted in volatile fission products) than it is for the unfractionated and enriched fallout deposited at great distances:

‘This problem has been customarily circumvented by using what amounts to an average of this ratio over the region of “local” fallout, where “local” was defined at the convenience of the author.’

They denote the average “local” fallout (R/hr at 1 hour)/(fission kiloton/square mile) ratio as K1, while the unfractionated fission product value is K0, so K1/K0 = fraction of activity in local fallout.

K1 is reduced by 25% due to instrument response to multidirectional gamma rays from fallout when calibrated using point sources. The batteries in the instrument partly shield the detector from gamma rays coming from certain directions, and the partial shielding of the instrument by the body of the person holding the instrument is also important for fallout measurements. It is also reduced by about 25% due to terrain shielding of direct gamma rays from fallout that collects in small hollows (microrelief) on the ground. Hence, the actual measured ratio, K2 = 0.77x0.75K1 = 0.56K1.

‘Local fallout’ has been defined in three different ways by different people, causing confusion over how to average K1. One way is to define local fallout according as fallout larger than a particular fallout grain size, another way is to define it as radiation levels greater than a particular dose rate at a given time after detonation, and a third way is to define it as the fallout deposited within a certain period of time, such as 24 hours after detonation.

Page 4 states that the best surface burst data is for 0.5 kt Johnie Boy (1170), 1.5 kt Buffalo-2 (980), 3.53 Mt Zuni (1150), 5.01 Mt Tewa (920), and 1.2 kt Sugar (1215), giving a mean of 1090 for K2 and 1930 for K1.

P. 8 states that the average K2 for 30 Nevada steel tower tests with tower heights (scaled by cube-root of yield to 1 kt) of 100 ft or more (due to the steel of the tower the fallout did not diminish below this value) is 220 (R/hr at 1 hour)/(fission kiloton/square mile), while for 40 air bursts at similar scaled altitudes, the mean is K2 = 25 (R/hr at 1 hour)/(fission kiloton/square mile).

Hence, high tower shots produce 100*220/1090 = 20% of the local fallout gamma dose rates of surface bursts, while free air bursts at heights above the fireball radius produced only 100*25/1090 = 2.3% of the fallout of surface bursts.

The Trinity result of K2 = 690 for 37Wkt1/3 feet steel tower burst is 100*690/1090 = 63% of the fallout of a surface burst and is equivalent to a 1 Mt detonation on a 30 storey steel framed building.



On p. 13, after investigating the local fallout fractions from Pacific surface bursts on coral islands, reefs and on the ocean water surface, they concluded that the type of surface did not have a substantial effect on the measured amount of local fallout produced by nuclear surface bursts.

On p. 17, after observing that iodine in fallout is highly fractionated since volatile and condenses late in the fireball history on to the surfaces of the remaining small particles (i.e., it is depleted from the local close-in fallout), they explain that the Japanese fishermen exposed to Bravo fallout on 1 March 1954 just north of Rongelap Atoll were found to have 7 times as much external gamma radiation exposure as thyroid iodine exposure.

In the July 1962 104 kt Sedan test in Nevada, a man who was exposed in the open to the base surge without any protection received a thyroid gland dose due only slightly higher than his external gamma exposure. Three air samplers determined that no more than 10% of the iodine in the Sedan fallout was present as a vapour during the cloud passage; i.e., 90% or more of the iodine was fixed in the silicate Sedan fallout and was unable to evaporate from the fallout particles to give a soluble vapour.

P. 19: ‘There is evidence that much if not all heavy fallout observed during atmospheric nuclear tests was visible as individual particles falling and striking objects, or as deposits ... the forehead will feel like sandpaper to the touch of the hand. The gritty sensation will also be felt on the hands and on bared arms. ... Probably you do not have a radiation-measuring instrument (if you do you can work outside until the instrument reads 0.5 R/hr), but heavy fallout can still be detected by one of these several clues: Seeing fallout particles, fine, soil-coloured, some fused, bouncing upon or hitting a solid object, particularly visible on shining surfaces such as the hood or top of a car or truck. ... Feeling particles striking the nose or forehead ... In the rain, after turning on the windshield wiper of your car, seeing fallout particles in raindrops slide downward on the glass and pile up at the edge of the wiper stroke, like dust or snow.’

P. 20: ‘Typical specific activities of fallout particles are 5 x 1014 fissions/gram of fallout; thus for each R/hr at 1 hour exposure rate produced, 5 milligrams of particles would be deposited per sq ft of area.’ For a minimal sickness gamma dose of 150 R over a week outdoor, 50 R/hr at 1 hour would be needed, requiring 0.25 gram per square foot of fallout to be deposited at 1 hour, which is readily visible on surfaces.

P. 27: Dr Timothy Fohl and A. D. Ealay of Mt. Auburn Research Associates (MARA) used a buoyant vortex fireball in their 1972 report Vortex Ring Model of Single and Multiple Cloud Rise, DNA-2945F, to model to simulate the effect of two simultaneous 13.5 Mt nuclear surface bursts. If they are detonated within 5 fireball diameters of each other, they merge while rising into a single cloud which reaches only 66% of the altitude reached by an individual detonation.

Going back to the Teller and Latter book, their figure of 5% for high tower shots roughly applies to the fractionated I-131, Cs-137, Sr-90 and Sr-89 in local fallout, rather than to the mixture of unfractionated and fractionated activities which give rise to the total gamma radiation field from local fallout. On page 99 they state:

'In the case ... where the fireball almost touches the ground, the close-in fallout is also only about five percent [actually, as we saw above, for 40 free air bursts where the fireball did not touch the ground, it was only 2.3% of the fallout gamma activity of surface bursts]. This is a somewhat surprising fact since in this case photographs show large quantities of surface material being sucked up into the cloud, just as they are in a true surface explosion.

'This material certainly consists of large, heavy dirt particles which subsequently fall out of the cloud. Yet most of them somehow fail to come in contact with the radioactive fission products.

'This peculiar phenomenon can be understood by looking at the details of how the fireball rises. At first the central part of the fireball is much hotter than the outer part and thus it rises more rapidly. As it rises, however, it cools and falls back around the outer part, creating in this way a doughnut-shaped structure. The whole process is analogous to the formation of an ordinary smoke ring.

'In most of the photographs one sees, the doughnut is obscured by the cloud of water that forms, but sometimes when the weather is particularly dry, it becomes perfectly visible. During the rather orderly circulation of air through the hole, the bomb debris and the dirt that has been sucked up remain separated.'


Above: toroidal circulation in the 1953 Climax test: dust passes up through the middle of the toroid without mixing with the ring shaped fireball, then it cools as it hits cold air at the top, causing it to cascade back around the outside of the fireball. Result: harmless, non-radioactive fallout of dust which has never come into contact with the radioactive toroidal shaped fireball (a ring doughnut shape with a hollow in the middle.



Above: toroidal fireball in the 1953 Grable nuclear air burst.




Above: photos taken at 17, 27 and about 50 seconds after the French nuclear test Licorne (a 914 kt balloon suspended shot, at 500 m altitude on 3 July 1970). The fireball thermal radiation is initially shielded by the expanding Wilson condensation cloud, which forms in humid atmosphere the low pressure, cooling air in the negative pressure blast phase (some distance behind behind the ever expanding compressed shock front). Edward Teller and Albert Latter clearly describe the scientific phenomena of the white 'skirt' surrounding the mushroom stem for bursts in humid air, on page 84 of their 1958 book Our Nuclear Future:

'It is actually a cloud: a collection of droplets of water too small to turn into rain but big enough to reflect the white light of the sun. ... The white skirts (which are not always present) do not consist of any material that is falling out of the cloud. On the contrary, a moist layer of air is sucked up into the cloud from the side and the droplets which form in this layer give rise to a cloud-sheet with the appearance of a skirt.'


Above: the lethal global fallout fallacy started with the 1949 book by David Bradley, No Place to Hide, which grossly exaggerated the Crossroads-BAKER fallout.

The effects of small doses of plutonium were falsely claimed to be harmful using metaphysical linear extrapolation from high dose radium effects, in lieu of actual data for low doses. When eventually in the 1970s and 1980s the detailed dosimetry for thousands of early radium dial painters was done (by exhuming the corpses and actually measuring the radium in the bones), in was discovered that alpha radiation effects internally were a threshold effect requiring a minimum of 1,000 rads or 10 Gy, so the linear dose-effects theory was bunk:

‘Today we have a population of 2,383 [radium dial painter] cases for whom we have reliable body content measurements. . . . All 64 bone sarcoma [cancer] cases occurred in the 264 cases with more than 10 Gy [1,000 rads], while no sarcomas appeared in the 2,119 radium cases with less than 10 Gy.’

- Dr Robert Rowland, Director of the Center for Human Radiobiology, Bone Sarcoma in Humans Induced by Radium: A Threshold Response?, Proceedings of the 27th Annual Meeting, European Society for Radiation Biology, Radioprotection colloquies, Vol. 32CI (1997), pp. 331-8.



DCPA Attack Environment Manual -

WHAT IS NUKEGATE? The Introduction to "Nuclear Weapons Effects Theory" (1990 unpublished book), as updated 2025

R. G. Shreffler and W. S. Bennett, Tactical nuclear warfare , Los Alamos report LA-4467-MS, originally classified SECRET, p8 (linked HE...